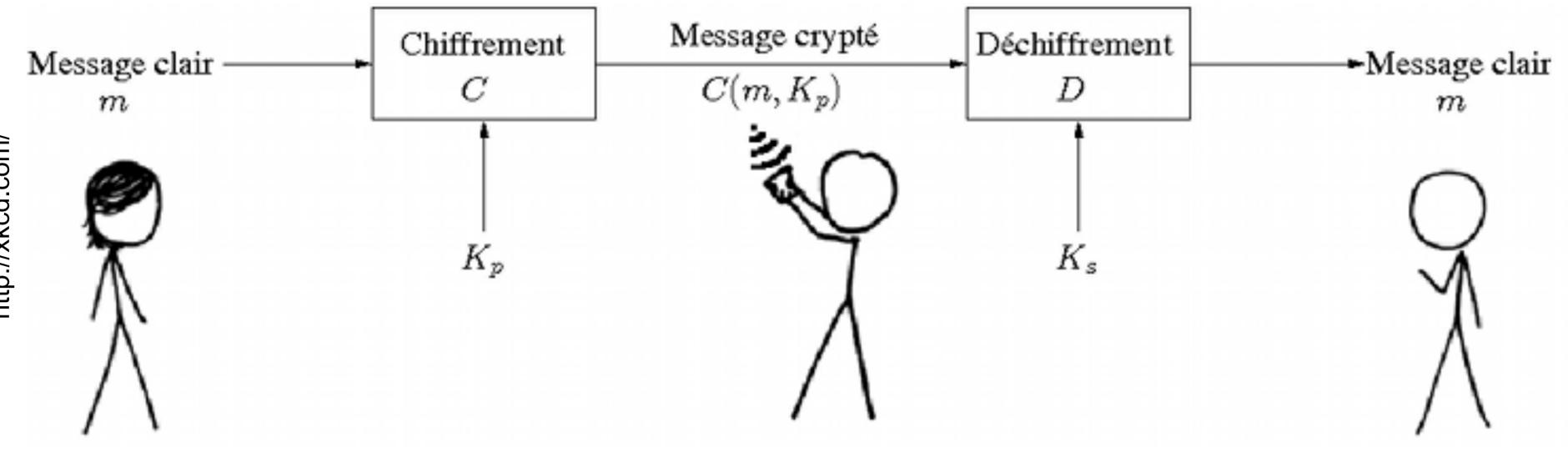
UNIVERSITÉ LIBRE DE BRUXELLES - FACULTÉ DES SCIENCES

Cryptologie

Département de Mathématique

Denis LONGREE, Thomas MAKKINK, Nicolas ROOBAERT et Chimed SAMMUT

Qu'est-ce que la cryptologie?



Cryptographie: Protéger des messages

Cryptanalyse: Tenter de déchiffrer des messages

L'arithmétique modulaire

En arithmétique modulaire, on ne travaille par sur les entiers eux-mêmes mais sur les restes de leur division euclidienne par un certain entier n.

Par exemple: $13 = 1 \mod 12$ car le reste de la division de 13 par 12 est 1.

On peut prouver qu'un entier k possède un inverse modulo n ssi il est premier avec n c'est-à-dire ssi PGCD(k,n) = 1.

L'arithmétique modulaire offre une vision efficace de certains problèmes et est utilisée en cryptologie.

Le code affin et le code de César

Le code de césar consiste à décaler l'indice de toutes les lettres d'un certain nombre donc à effectuer $C = M + k \pmod{26}$ pour chiffrer et $M = C - k \pmod{26}$ pour déchiffrer.

J'aime le chocolat Message M:

M'dlph oh fkrfrodw = k = 3Crypté C:

Le nombre de clés possibles est 26.

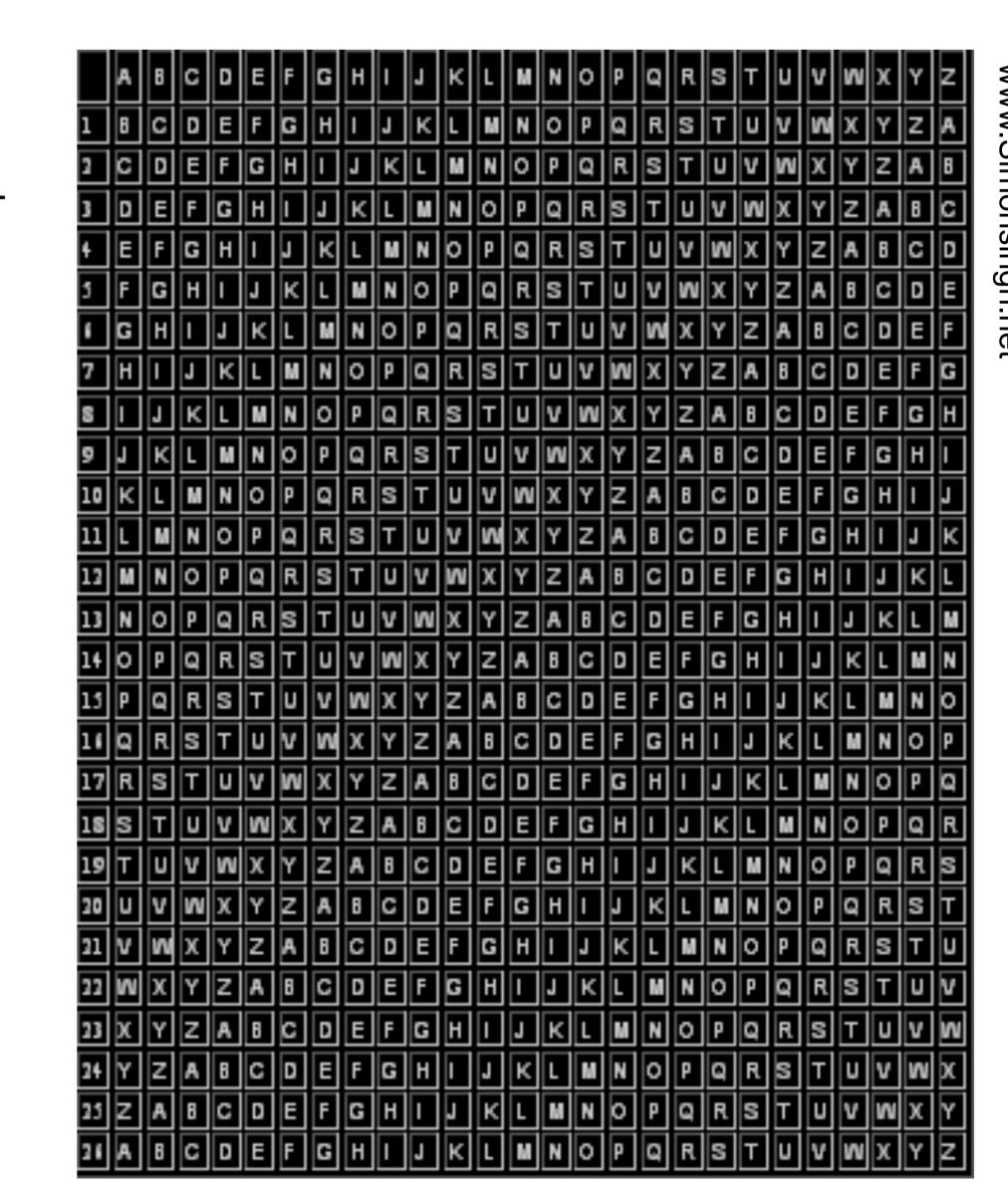
Plus généralement, le chiffrement affin consiste à remplacer l'indice x de chaque lettre par X = a.x + b (mod 26) où a et b sont compris entre 0 et 25 et a est premier avec 26.

Message M: J'aime le chocolat (a,b) = (3,2)Crypté C: D'camo jo ixsisjch

Le nombre de clés possibles est alors 12x26=312.

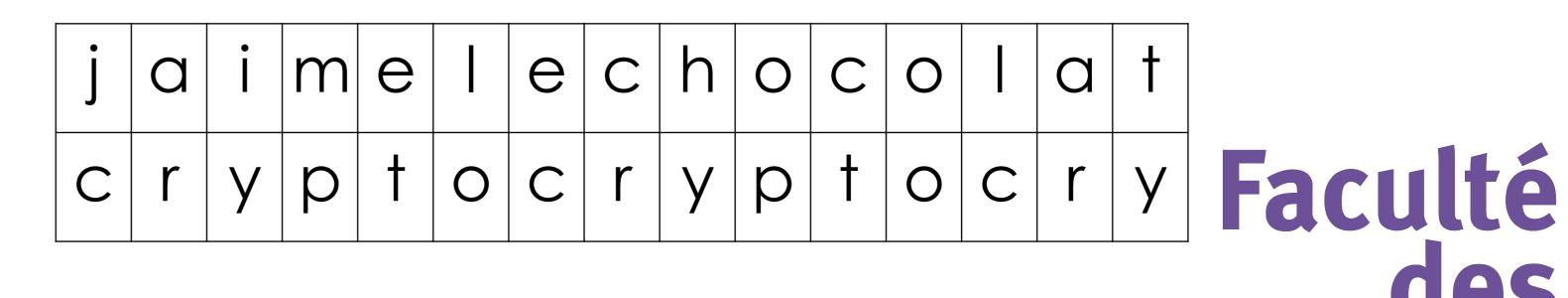
Le code de Vigenère

Le code de Vigenère consiste à choisir un mot comme clé que l'on répètera autant de fois que nécessaire jusqu'à obtenir la taille du texte. Ainsi à chaque lettre du message est associée une lettre de la clé. On chiffre ensuite chaque lettre du message à l'aide du code de César avec comme clé la lettre associée.



Message M: J'aime le chocolat Crypté C L'rgbw zg tfdvcnrr

: crypto



UNIVERSITÉ LIBRE DE BRUXELLES - FACULTÉ DES SCIENCES

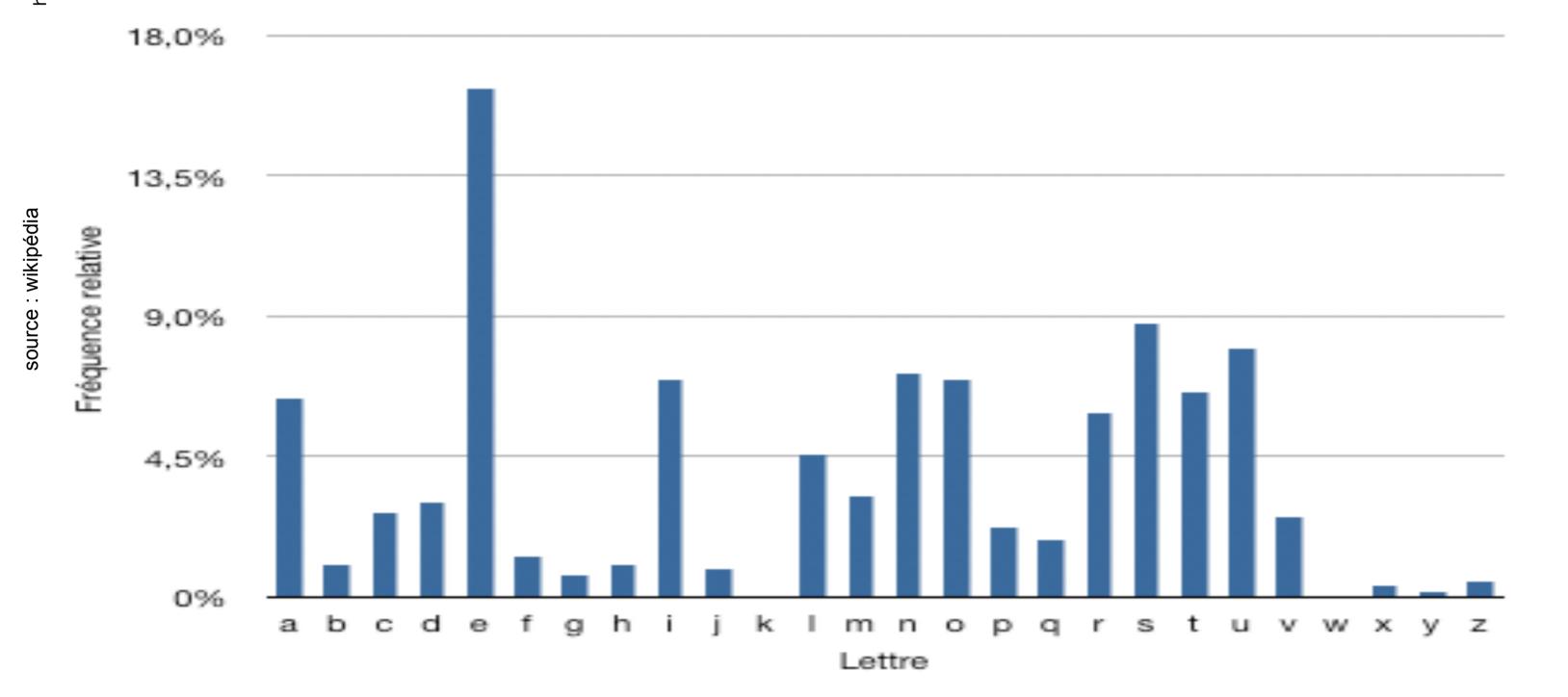
Cryptologie

Département de Mathématique

L'analyse Fréquentielle

Toutes les lettres n'apparaissent pas avec la même fréquence dans une langue.

Le principe de l'analyse fréquentielle est d'utiliser ce genre de faille.



Le code de Vernam

Ce code est un code de Vigenère où la clé n'est utilisée qu'une seule fois et est aussi longue que le message.

Théorème: Connaitre le message clair sachant le message chiffré revient à connaître le message clair.

$$(P(M = x | C = y) = P(M = x))$$

 $=1/26^{m}(2)$

En combinant (1) et (2), le résultat est démontré.

Démonstration:

RSA

Le RSA est un mode de chiffrement asymétrique : la clé de chiffrement diffère de la clé de déchiffrement : aucune « fonction » ne les relie. Par exemple, Alice voudrait que Bob lui transmettre un message:

1) initialisation Alice: - choisit deux grand nombres premiers p et q

- calcule n = p.q et $\phi(n) = (p-1).(q-1)$

- choisit d < n premier avec $\phi(n)$

- calcule e, l'inverse de d modulo $\phi(n)$

- rend publique la clé (n,d) et garde secrète (n,e)

2) **chiffrement** Bob : - représente son message par un entier M<n

- calcule $C = M^d \pmod{n}$

- transmet publiquement C à Alice

3) **déchiffrement** Alice: - retrouve \hat{M} via $\hat{M} = C^e$ (mod n) ce qui se démontre

grâce au petit théorème de Fermat.

La sécurité du RSA repose sur la difficulté de factoriser n en n=p.q

<u>Petit théorème de Fermat</u>:

Si p est un nombre premier et si a est un entier non divisible par p, alors : $a^{p-1} - 1$ est un multiple de p.

