

printemps des sciences

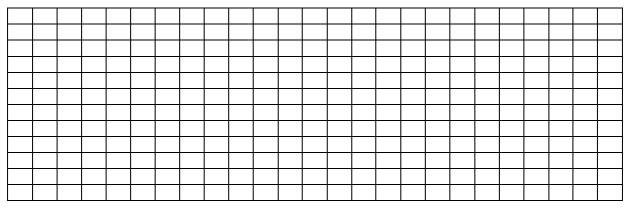
Avec le soutien de la Ministre de l'Enseignement supérieur et de la Recherche scientifique

Sciences extrêmes

19 - 25 mars 2007

Utilisation d'un oscilloscope digital - Etude de la résonance dans un circuit RLC

Au cours de cette séance, vous disposez d'un générateur de tension réglable V_G , d'une résistance R, d'un condensateur de capacité C et d'un bobinage de coefficient de self-induction L qui seront montés en série. Prenez les valeurs suivantes : $R = 100 \ \Omega$, $L = 50 \ mH$ et $C = 100 \ nF$.


- 1. Apprenez à utiliser l'oscilloscope pour :
- mesurer la valeur d'une tension continue
- observer une tension alternative (sinusoïdale) et déterminer son amplitude, sa période et sa fréquence
- déterminer expérimentalement la fréquence propre f₀ d'un circuit RLC.
- **2.** Pour obtenir la courbe de résonance de ce circuit RLC série, soumettez le à une tension alternative d'amplitude constante en faisant varier la fréquence f du signal envoyé par le générateur.

Vous constatez que la différence de potentiel V_R aux bornes de la résistance, donc aussi l'intensité du courant qui circule dans le circuit varie fortement. Pour obtenir un graphique de cette dépendance, mesurez V_R pour une vingtaine de valeurs de la fréquence f, entre f0 et f1 kHz.

	f (Hz)	V_R (volts)		f (Hz)	V_R (volts)
1			11		
2			12		
3			13		
4			14		
5			15		
6			16		
7			17		
8			18		
9			19		
10			20		

Prenez notamment plusieurs valeurs pour des fréquences proches de f_0 et reportez simultanément vos mesures cidessous pour apprécier votre choix de points de mesure, ceci afin d'obtenir une courbe représentative.

V_R (volts)

f (kHz)

- 3. Visiblement, l'intensité passe par un maximum lorsque $f = f_0$. C'est la fréquence de résonance. Vérifiez qu'elle est donnée par $f_0 = 1/2\pi$ (LC)^{1/2}.
- 4. Pouvez-vous citer des exemples de résonance mécanique ?
- 5. Entrez ces mesures dans un ordinateur en utilisant le tableur d'Excel et faites le graphique de V_R (f).