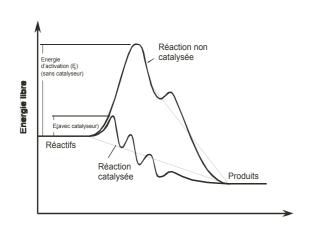


printemps des sciences



La catalyse

Introduction

La catalyse est l'action par laquelle une substance appelée catalyseur (en faible quantité par rapport au réactif) facilite une réaction chimique par sa seule présence, et se retrouve intacte à l'issue de celle-ci.

Cinétique : domaine de la chimie qui étudie les vitesses de réaction.

v = k [réactifs]

 $k = A \exp(-E_a/RT)$

Thermodynamique : domaine de la chimie qui étudie la possibilité qu'une réaction se produise.

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

Si $\Delta G^{\circ} \leq 0$, alors la réaction est POSSIBLE Si $\Delta G^{\circ} > 0$, alors la réaction est IMPOSSIBLE

Rôle du catalyseur: Permet de réduire l'énergie d'activation (Ea) de la réaction

AUGMENTATION DE LA VITESSE DE LA REACTION

Les deux types de catalyse

<u>La catalyse homogène</u> : le catalyseur et les réactifs se trouvent dans la même phase

Exemple:....

La catalyse hétérogène : le catalyseur et les réactifs se trouvent dans des phases différentes

 $\underline{\textit{Exemple}}$: Le pot catalytique, l'expérience du fil de platine ...

L'expérience du fil de platine

Le platine sert de catalyseur à l'oxydation ménagée du méthanol L'oxydation catalysée

 $CH_3OH(g) + 1O_2(g) CH_2O(g) + H_2O(g)$ $\Delta H_r^{\circ}/kJ \cdot mol^{-1} = -157$

L'oxydation complète

 $CH_3OH(g) + \Gamma O_2(g) CO_2(g) + 2 H_2O(g)$ $\Delta H_r^{\circ}/kJ \cdot mol^{-1} = -677$